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➢连续型随机变量 𝑥 ，概率密度 𝑝 𝑥 。函数 𝑓 𝑥 的期望

➢𝔼𝑝 𝑥 𝑓 𝑥 = ∫ 𝑓 𝑥 𝑝 𝑥 d𝑥

➢清晰地表明它是关于 𝑝 𝑥 的期望值

➢关于概率分布 𝑞 𝑥 的期望值

𝔼𝑞 𝑥 𝑓 𝑥 = ∫ 𝑓 𝑥 𝑞 𝑥 d𝑥

➢参数 𝜃 的概率分布 𝑝 𝑥; 𝜃 ，也可以写成 𝑝𝜃 𝑥

期望



4

➢KL散度𝐷KL 𝑝 ∥ 𝑞 ：用于衡量概率分布 𝑝 𝑥 和 𝑞 𝑥 之间差异

➢ 𝑥 为连续型随机变量

𝐷KL 𝑝 ∥ 𝑞 = ∫ 𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥
d𝑥

➢∫ 𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥
d𝑥 = ∫ 𝑝 𝑥 (log −𝑞 𝑥 − log −𝑝 𝑥 )d𝑥【相当于：平均信息差】

➢ 𝑥 为离散型随机变量

𝐷KL 𝑝 ∥ 𝑞 = ෍

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

➢KL 散度特性

➢两个概率分布的差异越大，KL 散度的值就越大。

➢KL 散度的值大于或等于 0，且仅当两个概率分布相同时，其值才为 0 

➢KL 散度非对称，𝐷KL 𝑝 ∥ 𝑞 和 𝐷KL 𝑞 ∥ 𝑝 的值不同

KL 散度



最大似然估计 (Maximum Likelihood Estimation)
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➢概率分布 𝑝，由参数 𝜃决定：𝑝 𝑥; 𝜃 ；例如，正态分布参数 𝜃 = {𝜇, 𝜎}

➢样本 𝒟 = 𝑥 1 , 𝑥 2 , ⋯ , 𝑥 𝑁 ，数据基于概率分布 𝑝 𝑥; 𝜃 独立生成

➢当参数为 𝜃 时，获得样本 𝒟 的概率密度

𝐿 𝜃 = 𝑝 𝒟; 𝜃 = 𝑝 𝑥 1 ; 𝜃 𝑝 𝑥 2 ; 𝜃 ⋯ 𝑝 𝑥 𝑁 ; 𝜃 = ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 ; 𝜃

➢𝐿 𝜃 称为似然 (likelihood) 或似然函数 (likelihood function)

➢以参数 𝜃 为参数的函数,表示在给定参数 𝜃 的情况下，样本 𝒟 出现的概率密度

➢最大似然估计：找到使似然 𝑝 𝒟; 𝜃 最大的参数 𝜃

෠𝜃 = argmax
𝜃

ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 ; 𝜃

➢ ෠𝜃 为观测到样本的概率最大，模型最拟合样本

➢常用对数似然 log𝑝 𝒟; 𝜃 的最大化 ෠𝜃 = argmax
𝜃

σ𝑛=1
𝑁 log 𝑝𝜃 𝑥 𝑛

最大似然估计



似然函数优化与ELBO
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➢似然函数的基础项

log 𝑝𝜃 = log ෍
z
𝑝𝜃(x, z)

➢偏导

𝜕log 𝑝𝜃

𝜕𝜃
=

1

σz 𝑝𝜃(x, z)
෍

z

𝜕

𝜕𝜃
𝑝𝜃(x, z)

➢log-sum形式，优化存在问题

➢各个参数项紧密耦合，
1

σz 𝑝𝜃(x,z)
为包含了所有的 𝑝𝜃(x, z)项共同的分母项

➢意味着参数 𝜃 对𝑝𝜃(x, z)的微小改变，其对总体梯度的贡献，会受到其他项𝑝𝜃(x, z)的影响

优化目标：似然函数



优化形式：sum-log与log-sum
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➢优化通常通过参数（𝜃）偏导并令其为零来实现，两种形式

➢𝐿 𝜃 = σ𝑖 log 𝑓𝑖 𝜃 【sum-log】

➢
𝜕𝐿

𝜕𝜃
= σ𝑖

𝜕

𝜕𝜃
log𝑓𝑖(𝜃) = σ𝑖

1

𝑓𝑖(𝜃)

𝜕𝑓𝑖(𝜃)

𝜕𝜃

➢每个 𝑓𝑖(𝜃) 的导数独立计算，然后简单相加。可以分别处理每一项

➢𝐿 𝜃 = log σ𝑖 𝑓𝑖 𝜃 【log-sum】

➢
𝜕𝐿

𝜕𝜃
=

1

σ𝑗 𝑓𝑗(𝜃)
⋅ σ𝑖

𝜕𝑓𝑖(𝜃)

𝜕𝜃

➢包含了所有的 𝑓𝑖(𝜃) 项共同的分母项

➢意味着参数 𝜃 对𝑓𝑖(𝜃)的微小改变，其对总体梯度的贡献，会受到其他项𝑓j(𝜃)的影响

sum-log与log-sum
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➢实际上，似然函数中还有其它项，即

➢
𝜕𝐿

𝜕𝜃
= σ𝑖

1

𝑓𝑖(𝜃)

𝜕𝑓𝑖(𝜃)

𝜕𝜃
+(其它项) 【sum-log】

➢
𝜕𝐿

𝜕𝜃
=

1

σ𝑗 𝑓𝑗(𝜃)
⋅ σ𝑖

𝜕𝑓𝑖(𝜃)

𝜕𝜃
+(其它项)【log-sum】

➢log-of-sum的问题

➢优化时，令
𝜕𝐿

𝜕𝜃
= 0，对于 log-of-sum 结构，得到一个复杂方程，其中所有参数都通过分母紧

密地耦合在一起

➢通常，这个log-sum方程没有解析解（closed-form solution）

sum-of-log与log-of-sum



似然函数的推导
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➢【优化目标】对数似然函数log 𝑝𝜃 。其中，𝜃是要学习的模型参数

➢【思想】引入隐变量𝐳及其变分分布𝑞(𝐳)，将对 𝜃 的优化转为对 (𝜃, 𝑞) 的联合优化

➢【策略】最大化对数似然转为最大化它的下界(ELBO)。通过交替优化ELBO，单调提

升log 𝑝𝜃的值，对应着EM算法的E步和M步

➢E步(变分步 / Expectation Step)

➢固定当前模型参数 𝜃，将 𝑞(z) 调整到最优。即令 𝑞 z = 𝑝(z|𝐱, 𝜃)

➢此时， ELBO被提升至紧贴真实的对数似然函数值，得到当前参数 𝜃 的最优下界

➢等价于构建了完整数据的对数似然期望（Q函数）

➢【当前模型参数下的，隐变量后验分布𝑝(z|𝐱, 𝜃)的最优估计；故称变分步】

➢M步 (最大化步 / Maximization Step)

➢固定上一步得到的最优分布 𝑞 𝑧 ，调整模型参数 𝜃 ，最大化当前的ELBO

➢得到新的模型参数

➢由于下界被抬高，真实对数似然也随之被保证单调提升

➢【当前隐函数分布下的，对模型参数的最优估计】

EM算法的变分推断视角
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【优化项】log𝑝𝜃 𝑥 = log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥

【分析】用辅助变分分布 𝑞(𝑧)对后验分布𝑝𝜃 𝑧 ∣ 𝑥 （ 𝑝𝜃 𝑧 ∣ 𝑥 给定观测数据𝑥，猜测其

潜在变量𝑧分布）进行最优估计。因此，需要拼凑出
𝑞 𝑧

𝑝𝜃 𝑧∣𝑥
项！

变分分布 𝑞(z)的分析

log𝑝𝜃 𝑥 = log
𝑝𝜃 𝑥,𝑧

𝑝𝜃 𝑧∣𝑥
【引入数据到隐变量的条件后验概率 𝑝𝜃 𝑧 ∣ 𝑥  】

= log
𝑝𝜃 𝑥,𝑧

𝑝𝜃 𝑧∣𝑥

𝑞 𝑧

𝑞 𝑧
 乘以

𝑞 𝑧

𝑞 𝑧
= 1 【引入任意的隐变量分布𝑞 𝑧  】

= log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥
【引入隐变量分布和后验分布的差异】

于是， log𝑝𝜃 𝑥 = log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥
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【优化项】log𝑝𝜃 𝑥 = log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥

σ𝑧 𝑞 𝑧 = 1，则𝔼𝑧∼𝑞 𝑧 1 = 1 ，而log𝑝𝜃 𝑥 = log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥
与𝑧无关，于是

ELBO

log 𝑝 𝑥 = 𝔼𝑧∼𝑞 𝑧 log 𝑝 𝑥 【期望项与𝑧无关，当常数看】

= 𝔼𝑧∼𝑞 𝑧 log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥
【拆分期望项】

= 𝔼𝑧∼𝑞 𝑧 log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
+ 𝔼𝑧∼𝑞 𝑧 log

𝑞 𝑧

𝑝𝜃 𝑧∣𝑥
【期望的线性性质】

= ELBO 𝑥; 𝑞, 𝜃 + 𝐷KL 𝑞 𝑧 ∥ 𝑝𝜃 𝑧 ∣ 𝑥  

其中， ELBO 𝑥; 𝑞, 𝜃 ≝ 𝔼𝑧∼𝑞 𝑧 log
𝑝𝜃 𝑥,𝑧

𝑞 𝑧
【sum-log形式，可以解析！！】
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➢【优化项】log 𝑝 𝑥 = ELBO 𝑥; 𝑞, 𝜃 + 𝐷KL 𝑞 𝑧 ∥ 𝑝𝜃 𝑧 ∣ 𝑥

➢E步：固定模型参数𝜃 = 𝜃o𝑙𝑑， 优化𝑞 𝑧

➢log 𝑝 𝑥 与𝑧无关，不能更大。因此，优化目标转为原目标函数的下界ELBO，让𝐷KL最小即可

➢于是，𝐷KL = 0；从而，𝑞 𝑧 = 𝑝𝜃o𝑙𝑑
𝑧 ∣ 𝑥

➢用后验概率 𝑝𝜃 𝑧 ∣ 𝑥 作为对隐变量分布的最佳猜测 𝑞 𝑧

➢即，现有模型给出了缺失信息的一个最合理猜测

➢ELBO更新

➢ELBO 𝑥; 𝑞 = 𝑝𝜃o𝑙𝑑
, 𝜃 = 𝔼𝑝𝜃o𝑙𝑑

𝑧∣𝑥 log
𝑝𝜃 𝑥,𝑧

𝑝𝜃o𝑙𝑑
𝑧∣𝑥

似然函数优化 – E步
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➢【优化项】log 𝑝 𝑥 = ELBO 𝑥; 𝑞, 𝜃 + 𝐷KL 𝑞 𝑧 ∥ 𝑝𝜃 𝑧 ∣ 𝑥

➢M步：固定隐变量分布𝑞 𝑧 = 𝑞o𝑙𝑑(𝑧)，优化𝜃

➢𝐷KL与𝜃无关，因此，最大化ELBO 𝑥; 𝑞, 𝜃 即可

➢通过ELBO更新参数 𝜃 

➢实际上此步骤为标准的最大似然，于是，新模型更适应当前的隐变量分布𝑞o𝑙𝑑(𝑧)

➢新一轮E步和M步

似然函数优化 – M步
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➢ELBO单调上升，且有上界，故EM算法收敛

单调有界
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